Codes and the Cartier operator
نویسندگان
چکیده
منابع مشابه
Codes and the Cartier Operator
In this article, we present a new construction of codes from algebraic curves. Given a curve over a non-prime finite field, the obtained codes are defined over a subfield. We call them Cartier Codes since their construction involves the Cartier operator. This new class of codes can be regarded as a natural geometric generalisation of classical Goppa codes. In particular, we prove that a well-kn...
متن کاملLinear Recurrences with Polynomial Coefficients and Computation of the Cartier-Manin Operator on Hyperelliptic Curves
We improve an algorithm originally due to Chudnovsky and Chudnovsky for computing one selected term in a linear recurrent sequence with polynomial coefficients. Using baby-steps / giant-steps techniques, the nth term in such a sequence can be computed in time proportional to √ n, instead of n for a naive approach. As an intermediate result, we give a fast algorithm for computing the values take...
متن کاملLinear Recurrences with Polynomial Coefficients and Application to Integer Factorization and Cartier-Manin Operator
We study the complexity of computing one or several terms (not necessarily consecutive) in a recurrence with polynomial coefficients. As applications, we improve the best currently known upper bounds for factoring integers deterministically, and for computing the Cartier-Manin operator of hyperelliptic curves.
متن کاملThe Rank of the Cartier Operator on Cyclic Covers of the Projective Line
We give a lower bound on the rank of the Cartier operator of Jacobian varieties of hyperelliptic and superelliptic curves in terms of their genus.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2014
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2014-12011-9