Codes and the Cartier operator

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes and the Cartier Operator

In this article, we present a new construction of codes from algebraic curves. Given a curve over a non-prime finite field, the obtained codes are defined over a subfield. We call them Cartier Codes since their construction involves the Cartier operator. This new class of codes can be regarded as a natural geometric generalisation of classical Goppa codes. In particular, we prove that a well-kn...

متن کامل

Linear Recurrences with Polynomial Coefficients and Computation of the Cartier-Manin Operator on Hyperelliptic Curves

We improve an algorithm originally due to Chudnovsky and Chudnovsky for computing one selected term in a linear recurrent sequence with polynomial coefficients. Using baby-steps / giant-steps techniques, the nth term in such a sequence can be computed in time proportional to √ n, instead of n for a naive approach. As an intermediate result, we give a fast algorithm for computing the values take...

متن کامل

Linear Recurrences with Polynomial Coefficients and Application to Integer Factorization and Cartier-Manin Operator

We study the complexity of computing one or several terms (not necessarily consecutive) in a recurrence with polynomial coefficients. As applications, we improve the best currently known upper bounds for factoring integers deterministically, and for computing the Cartier-Manin operator of hyperelliptic curves.

متن کامل

The Rank of the Cartier Operator on Cyclic Covers of the Projective Line

We give a lower bound on the rank of the Cartier operator of Jacobian varieties of hyperelliptic and superelliptic curves in terms of their genus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2014

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2014-12011-9